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Abstract

Spacecraft clcsign optimization is a difficult problcm,  clLlc to
the complexity of optimization cost surfaces and the human
cxpcrtisc  in optimization that is necessary in orclcr to achicvc
good results. In this paper, wc propose the LISC of a set
of generic, mctahcuristic optimization algorithms (e.g., ge-
netic algorithms, simulated annealing), which is configured
for a particular optimi~.a(ion  problem by an adaptive problcm
solver based on artificial intelligence and machine learning
techniques. Wc describe work in progress on OASIS, a sclf-
configuring optimization systcm based on these principles.

1 Introduction

Many cnginccrirrg  design optimization problems arc instances
of crmstrainccl  optimization problems. Given a set of decision
variables X and a set of constraints C on X, the constrained
optimization is the problcm  of assigning values to X to n~ini-
mix or maxirni~c an objcctivc  function I’(X),  subject to the
constraints C.

Although  constraiacd optimization is a mature field that has
been studied cxtcnsivcly  by rcscarchcr,  there arc a number
of open, fundamental problcrns  in the practical application of
optimi~ation techniques. In particular, the problem of select-
ing and configuring an optimization algorithm for an arbitrary
problcm  is a significant obstacle to the application of state of
the ar-1 algorithms to real world problcrns.

Wc arc cur-rcntly  developing the Oplil)lizfltioll A.~.~i.rtallf (~A-
S1.S) systcrn, an automated, self-configurirrg optimization 1001
for spacecraft cicsign these two issues. ‘1’hc goal of OASIS is
to facilitate rapid “what-if” analysis of spacecraft design by
clcvcloping  a widely applicable, spacecraft design optin~iza-
tion systcm that maximizes the automation of Ihc optirniz,atirm
process and minirnims the user effort required to configure the
systcm for a particular optimimtion problcrn instance. In the
rest of this paper, wc dcscribc initial work on OASIS.

2 Resource-Bounded Black Box Opti-
mization

The problcm of global optirniz,ation  on diflicult, arbitrary
cost surfaces is still poorly understood. The optimization of
smooth, convex cost functions is well undcrstomt, and efficient
algorithms for optimization on these surfaces have been cle-
vclopccl. However, these traditional approaches often perform
poorly on cost surfaces with many local optima, since they tend
to get stuck on local optima. unfortunately,  many real-world
optimi~,ation  problems have such a “rugged” cost surface and
arc thus difficult problems for traditional approaches to opti-
mization.

In addition, many real-worlcl optimization prohlcms  arc
black-lm opfimimtim problem) in which the structure of
the cost function is opaque. That is, it is not possible to di-
rectly analy~.c the cost surface by analytic means in. order to
guide an optirni~.ation algorithm. For example, 1’(X)  can bc
computed by a complex simulation about which the optin~i?a-
tion algorithm has no information (e.g., to evaluate a candi-
date spacccraf(  design, we could simulate its operations using
Icgacy FORTRAN code about which very little is known to the
optimizer except for its 1/0 specifications). Black-box opti-
mization problems arc therefore challenging because currently
known algorithms for black-box optimization are essentially
“blind” search algorithms-instead of being guided by direct
analysis of the cost surface, they must sarnplc the cost surface
in order to indirectly obtain useful information about the cost
surface.

Recently, there has been much rcsear-ch  activity in so-called
mcfahcuristic  algorithms such as simulated annealing [5], tabu
search [2, 3] and genetic algorithms [4] for global optin~iza-
tion. ‘Ilcsc  arc. loosely defined, “general-purpose” heuristics
for optimization that proceed by iteratively sampling a cost
sur-face, and they irnplcmcnt  various mechanisms for cscap-
in,g local optima, Although these algorithms bavc been shown
to bc successful on nurncrous applications with difficult cost
surfaces, the behavior of these algorithms is still poorly un-
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to rmclcs in the mctbogram correspond (0 input parameters for
the, ccnnponcrrt represented by the nrxic, and outputs from a
mctiqrm node correspond to output vaiucs computcci  by the
component. MIDAS is impicmcntcd as a C.ORBA ohjcct, and
suppork+ a wicic variety of mcthocis  that can be uscci by cxtcr-
nai ciient systems (e.g., a GUI) to manipulate the mcthogram.
Tilis csscntiaiiy provicies  an optimization systcm with a uni-
form interface for any cicsign modci encapsulate.d in Mii)AS.
Therefore, our solution to the probicm of supporlirrg  a wi(ic
range of cicsign modcis  is to support an intcrfacc  to Mil)AS.
That is, OASIS is designed to bc an optimization system that
can be used to optimize any MIDAS mocicl.

‘i’ilus,  tile design mociei, wi~ich constitutes tile user input to
tile OASIS system, is comitosc(i of the foiimving:

. A M i l)AS ciiagram ti~at cncapsuiatcs the design mo(ici,

● A iist of ciccision variables, as wcii as ranges of tilcir
imsibic vaiucs (may be continuous or discrctc),  an(i

. An outiwt fronl a nlctilograrn nocic timt corrcspfsncis the
user’s objcctivc  function vaiuc.3

Figure  i silows part of a M i DAS mcthograrn  for ti)c Neptune
Orbiter mmici (see Section 4).
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3.2 lllack-I\ox Optimization Algorithm Suite

OASIS inciu(ics a set of cotljigutal)le  black-box opfimizatim

filgorithtmt wi~ich are generic illlplclllc]]latio[ls  of optimization

3Thc “hjcctlve ftl(lctlon  ~C)tlICI ~itl)cr hc oh(aincd  directly fr~~lll one of lhc

existing outputs in the lncthogr:un, or it could  k ccrmputed fry adding a new
ncrdc  that  computes, e.g., a weighted linear combination of srrmc  set of output
necks

algor-itilms that provicic an interface for ciynarnic reconfigura-
tion of their controi points at runtimc.  Currcntiy,  tilis consists
of a rccorrfigurabic genetic aigoriti~m [4] a rccorriigurablc  sinl-
uiatcd annealing aigoritbm [5], and some variants of traditional
iocai optimization aigoriti~rm  (Pmvci i‘s Mcti~od  anti conjugate
gra(iicnt algoriti)m) [6] witi~ rarr(iorn restarts.

3.3 Self-Configuring Optimization System

Given a sixtcccraft design optimization probicm  instance in the
form of a cicsign mocici, tile self-corrfiguriffg optimization conl-
poncnt of OASIS sciccts and configures a mctahcuristics from
ils suite in orxicr to maximize some utility measure (usuaiiy,
ti~is is tile [iuaiity  of tile design found by tile system).

Our approacil to optimizer configuration is to view it as a
Jncla-lcvci  heuristic search througil the space of possibie  prob-
icm soivcr configurations, whet-c candidate configurations arc
cvaiuatcd witi~ respect to a utiiity measure, and the goal is find a
configuration that maximizes ti~is utiiity measure. In principic,
it is possibic  to do a brute-force scarci~ tilr-ough the space of
possible probicm soivcr configurations. This method is cicariy
intractable in gcncrai, since the number of configurations is cx-
ponemtiai in the number of ccrntroi points. Consicier  a probicm
soivcr with c corttroi  points, each witi] v vaiucs; there arc c“
iwohicm soivcr configurations to bc consi(icrc(i.

Given  tile enormous computational expense of searching
tiumogil tim space of prcrbicm sol ver configurate ions, onc migi]t
wonder wiwtbcr the searcil shmrid/coulci  bc avoi(icci ait[)gcthcr.
‘it) avoici scarci~ compictcly,  there arc two aitcrnativcs.  l’hc
first is to find a mcfahcurislic  ti~at outperforms aii otilcrs for
aii probicm instances (and ti~crcby avoitiing tile problem of
optimizer configuration aitogcti~cr).  As discussed in Section
2, we reject ti~is soiution as infcasibic.  The sccon(i  alternative
is a syntactic, “iooktrp-table”  approach: ciassify  ti~c probicm
instance as a member of some ciass of probicrns, ti~cn appiy
tile mctahcuristic configuration tilat is known to work wcli for
ti~is ciass of probicrns. Ti~is mctimd can work very wci i if
we happen to have studied the ciass of probicms  to which the
particular instance bciongs, an(i we have avaiiablc  a good tcch-
niquc for classifying ti~c instance as a member of ti~c ciass.
q’his  approach, however, is of iimitcci utiiity if wc encounter
an instance of a ciass that we know noti~ing  about, or if wc
cannot correctiy  ciassify tile problcm  as onc tilat bciongs to a
class for wilich wc ilavc a good mctahcuristic corrfiguration.4
l’bus, a purciy syntactic approach does not suffice. A sclf-
configuring optimization system ncccis to scarcil the space of
possible mctahcuristic configurations-tile cilaiicngc is to ctis-
mvcr  and appiy cnoLIgil  heuristic knowiccige  to tile task to
make it more tractabic.

41ndccd, the prohleltls of defining useful  notions of CI:ISSCS  of problcnl
imtmccs,  md classifying a problen)  instance as belonging to SOIIIC  particular
claw is a challenging pattern recognition problc)n in itw-lf



4 Example Spacecraft Design Optimize-
tion Problems

In this section, wc describe two specific spacecraft design op-
timi~aticm problems to which wc arc currently applying the
OASIS system. TIK! firs( is a Iow-level optimi?.ation  of tbc
physical dimensions of a soil pcnctmtor microprobe. The scc-
mrci is a systcm-icvci  optimization of the configuration of the
communication system of an orbikx spacccraf(.  These ex-
amples arc illustrative of the range of ciiflcrcnt oplimimtirm
problems tilat arise in spacecraft design.

4.1 The Mars Soil I’cmetrator  Microprobe

As parl of’ the NASA Ncw Miiicnnium program, two n~icro-
probcs, each consisting of a very iow-mass  acroshcli and pcnc-
trator systcm, arc pimrncd  to iaunch in January, i 999 (attacbcd
to the Mars Surveyor iandcr), to arrive at Mars in I)cccrnbcr,
1999. The probes wili baiiisticaiiy enter the Martian atnm-
spbcrc and passivciy  crricnt thcmscivcs  to meet peak heating
anti impact requirements. Upon in~pacting the Marlian surface,
the probes wiii punch timrugh the entry acroshcii  and separate
in(o a fore- and nf(body  system. l’hc forebociy wi i] reach a
depth of O.S to 2 meters, whiic the aftbmiy wiii remain on the
surface for coll~lllullicatiolls.

Ilacb pcnctralor system inclu(ies a suite of iligbly nliniatur-
izcd components ncccicd for future micropcnctrator networks:
ultra low tcmpcraturc batteries, power nlicrocicctronics, anti
acivanccd l~~icro-c(}ntr(~llcr,  a ll~icrc)tclccoll}  l~~u[~ications sys-
tem and a science payload package (a microkrscr  system for
cictccting  subsurface wa[cr).

l’hc optimization of physical design parameters for a soil
pcnctrator bascci on these hlars microprobe is the first tcslbc{i
for the OASIS system. I’hc microprobe optimization  ciomain  in
its entirety is very complex, involving a three-stage simulation:

●

●

●

Separation anaiysis  (i.e., separation from the Mars Sur-
veyor),

Acrodynamicai simuiatiorr,

Soii impact and penetration.

To iiiustratc the utiiity of a(iaptivc problcm  solving, wc now
briefly describe current work on a simplified version of tile soil
penetration s(agc.

Given a number of pat-amctcrs  describing the initial concli-
tirms inciuciing  the angic of at(ack of ti~c pcnctrator,  the impact
veiocity, anti tile hardness of the target surface, the optin}ira-
tion probicm  is to scicct the totai icnggh anti outer diameter of
the pcnctralor,  where the objcctivc  is to maximize the ratio of
the cicpth of penetration to the icngtb of the pcnctrator.  We
maximize tilis ratio, rather than simply maxinlir.ing tile depth
of penetration, since for the Mars microprobe scicncc mission,

the cicpth of penetration should idcaiiy pcnctratc at icast the
icngth of the entire pcnctrator).

Onc of tile initiai condition parameters that has a significant
impact on the structure of the cost surface for tilis optimization
problem is the soii numtrcr,  which indicates the hardness of
ti~c target surface. Intuitively, one would expect this to bc
an important parameter, since, for example, it is clearly more
dif[icuit to pcnctratc harder targets (ti~c pcnctrator  couici bounce
off tbc target, for example).
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l;igure 2: Sampic points from cost surface for soil pcnctratcrr
microprobe mociei. Plot of ratio of depth of penetration to
length of pcnctrator.  Soil number= 13 (sof[  soii). The z-axis
r-cprcscnts the fitness value.
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I;igarc 3: Sample points from cost surface for soii pcnctrator
microprobe mocicl. Plot of ratio of depth of penetration to
length of pcnctrator. Soii number = 7 (harxi soii).The z-axis
rcprcscnts  the fitness vaiuc.

F’igurcs 2 anti 3 show piots of sample points from the cost


